Non-Revenue Water Management in Cyprus

Amman, December 3, 2018
Presentation Contents

• Water Management in Cyprus
• Network Design and Development
• Non-Revenue Water Activities
• Leakage Monitoring and Management
• Targeting and Benchmarking
• Intermittent Water Supply
Water Management in Cyprus
Recent Water Situation in Cyprus

- Gradual change in the climate
- Substantial decrease in annual rainfall > 20%
- Reduction of runoff into the reservoirs > 40%
- Periods of low rainfall are becoming more frequent
- Demand is continuously increasing
- Frequent periods of low or no rainfall (1991-92, 1997-2000, 2008-09)
- Government forced to apply water restriction measures
 - Drastic water cuts in irrigation
 - Severe restrictions to domestic water supply
- Add water to the National Balance:
 - Construction of desalination plants: 80Mm3 (2017)
 - Use of treated effluent for agriculture: 22Mm3 (2017)
- Need for water conservation and water loss management
Recent Water Statistics for Cyprus

Water Usage by Sector

- Agriculture: 28.4%
- Household: 64%
- Tourism: 2.9%
- Industry: 4.7%

Total needs: 250 Mm³/year

Water Inflow to Dams

(Total Dam Storage: 332 Mm³)

Annual Quantities of Treated Effluent from WWTPs

Source Contribution to Potable Water

Source: Water Development Department
Shipping Water

Athens – Limassol
August 2008 – April 2009
35,000 m³/day
5 Euro/m³
NRW Management

NRW is:

- a continuous activity
- an integral part of distribution network management
- based on a long term strategy
- cost effective, especially in water scarce areas

HOWEVER, ITS SUCCESS DEPENDS ON:

- Commitment and dedication at all levels
- Adoption of appropriate methodologies and technologies
- Use of appropriate and reliable indicators for benchmarking, such as liters/service connection/day and ILI
Key Performance Indicators

Continuous 24x7x365 potable water supply – coverage is 100% in all areas

Water Board of Nicosia

<table>
<thead>
<tr>
<th>YEAR</th>
<th>% of SIV</th>
<th>ILI</th>
<th>Lit/conn/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>19.5</td>
<td>2.9</td>
<td>137</td>
</tr>
<tr>
<td>2012</td>
<td>23.0</td>
<td>4.3</td>
<td>203</td>
</tr>
</tbody>
</table>

Water Board of Larnaca

<table>
<thead>
<tr>
<th>YEAR</th>
<th>% of SIV</th>
<th>ILI</th>
<th>Lit/conn/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>23.0</td>
<td>2.5</td>
<td>131</td>
</tr>
<tr>
<td>2012</td>
<td>28.0</td>
<td>3.3</td>
<td>168</td>
</tr>
</tbody>
</table>

Water Board of Lemesos

<table>
<thead>
<tr>
<th>YEAR</th>
<th>% of SIV</th>
<th>ILI</th>
<th>Lit/conn/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>16.7</td>
<td>1.8</td>
<td>91</td>
</tr>
<tr>
<td>2012</td>
<td>24.0</td>
<td>2.8</td>
<td>143</td>
</tr>
</tbody>
</table>
Network Design and Development
Major Network Developments (Water Board of Lemesos)

- **1986 - 1990**
 - Major expansion of storage and supply network
 - Establishment of pressure zones and DMAs
 - Installation of SCADA system

- **1991 - 1993**
 - Pressure reduction study
 - Installation of pressure management in 8 out of 27 DMAs

- **1994 - 1995**
 - Digitization of all maps of the water supply and distribution system

- **1997 - 1998**
 - Review of leakage control activities by external consultant
 - Recommendations for the establishment of a leakage management policy

- **1999 - 2012**
 - DMA re-design and application of pressure management (45 DMAs)
 - Use of advanced technology in DMA monitoring and leak detection
 - Adoption of IWA WLSG “best practice” approach to NRW management

Source: WBL
Network Design – Key Considerations

DMA categories

- Small : <1000 properties
- Medium : 1000 – 3000 properties
- Large : 3000 – 5000 properties

Factors considered in DMA design

- Minimum variation in ground level
- Single entry point into the DMA
- Well defined DMA boundaries
- Area meters correctly sized and located
- Apply pressure management
- Continuous monitoring

Source: WBL
Typical DMA Inlet Chamber

- Pressure reducing valve (downstream pressure control, open/close capability)
- Pressure sensor (downstream pressure monitoring)
- District meter (mechanical “Woltman” type)
- Strainer (meter protection)

Source: WBL
Monitoring and Data Transfer

Dedicated Computer in Control Room

Data Communication
- E-mails / SMS sent from each DMA
- Alarms sent to Operator’s mobile phone for:
 - High/Low pressure
 - High MNF
 - No flow
 - Low battery status

PSTN and GSM Network

PROGRAMMABLE CONTROLLERS IN DMAs
Pressure Management

Reduction in:

- surges and excess pressures
- burst rates and background leakage
- repair costs
- flow rates of all leaks
- some components of consumption
Pipeline and Assets Management

- High quality materials / Proper installation
- High standard of maintenance
- Pipeline replacement using a decision support system
Accurate and Comprehensive Metering

The first step in establishing how much water is produced and used

Accurate measurement of:

- Water produced and/or imported
- Water flow to and out of treatment plants
- Water flow to and out of storage reservoirs
- Water flow into Districts
- Customer consumption

Eliminate or minimise

Authorised Un-metered Consumption
Non-Revenue Water Activities
Annual Water Balance (m³) (“Top - Down”)

Reaching the point of Accountability

<table>
<thead>
<tr>
<th>System Input Volume</th>
<th>Authorised Consumption</th>
<th>Unbilled Authorised Consumption</th>
<th>Billed Authorised Consumption</th>
<th>Billed metered consumption (including water exported)</th>
<th>Billed unmetered consumption</th>
<th>Unbilled metered consumption</th>
<th>Unbilled unmetered consumption</th>
<th>Revenue water</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 887 876</td>
<td>10 714 505</td>
<td>64 440</td>
<td>10 650 065</td>
<td>10 650 065 (82,64%)</td>
<td>Zero</td>
<td>Zero</td>
<td>64 440 (0,50%)</td>
<td>10 650 065 (82,64%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-revenue water</th>
<th>2 237 811</th>
<th>17,36%</th>
<th>1 722 295</th>
<th>Leakages on raw water mains and at the treatment works Zero</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leakage on transmission and/or distribution mains 90 215 (0,7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leakage and overflows at transmission and/or distribution storage tanks 12 888 (0,10%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leakage on service connections up to the metering point 296 421 (2,30%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>171717</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apparent Losses</th>
<th>451 076</th>
<th>3.50%</th>
<th>Unauthorised use 64 440 (0.50%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Metering inaccuracies 386 863 (3.00%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Losses</th>
<th>2 173 371</th>
<th>16.86%</th>
<th>Real Losses 1 722 295</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>13.36%</td>
</tr>
</tbody>
</table>
Commercial Losses

All customers are metered

Water theft
 o Theft from hydrants
 o Meter by-passes
 o Tampering with meters

Meter under-registration
 o Improve meter accuracy
 o Use of volumetric meters
 o Certified meter test bench

Meter reading errors
 o Hand-held devices
 o Change meter readers’ routes
 o Check zero/low consumption

Accounting errors
 o Billing software
 o Threshold alarms

Source: Rizzo and Cilia, 2005
Physical Losses

Reduction in:

- Surges and excess pressures
- Burst rates and background leakage
- Flow rates of all leaks
- Some components of consumption

- Minimize “Leak Run Time”
- Use quality materials & specification
- Perform quality repairs & inspection

- High quality materials / Proper installation
- High standard of maintenance
- Pipeline replacement using a decision support system
Speed and Quality of Repairs

Minimize “leakage run time”; Management of leak ID, location, and repair processes; Measure leak run & repair times; Quality materials specification; Quality repairs & inspection

Number of Pipes Repaired

- House connection polyethylene: 712 (34%)
- House connection galvanised iron: 1,169 (55%)
- Distribution pipework: 243 (11%)

Response Repair Time

- Same day: 712 (34%)
- Next day: 1,169 (55%)
- Next two days: 243 (11%)

Source: WBL
Active Leakage Control
Pressure Reduction

DMA (Sector 2)

<table>
<thead>
<tr>
<th>DMA (Sector 2)</th>
<th>AZNP (m)</th>
<th>Actual MNF (m³/hr)</th>
<th>Background losses (m³/hr)</th>
<th>Locatable losses (m³/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>before</td>
<td>after</td>
<td>before</td>
<td>after</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Annual water saving = 220 000 m³

or € 170 000

REDUCTION

30 m³/hr (25%)
Reduced Burst Frequency

(Reported Leaks)

<table>
<thead>
<tr>
<th>Description</th>
<th>Number of bursts reported</th>
<th>Reduction of leaks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before (7 months)</td>
<td>After (7 months)</td>
</tr>
<tr>
<td>Distribution</td>
<td>49</td>
<td>27</td>
</tr>
<tr>
<td>Communication pipes</td>
<td>296</td>
<td>178</td>
</tr>
</tbody>
</table>

ANNUAL COST SAVING

IN PIPE BURST REPAIRS €100 000

Comparison of Results

<table>
<thead>
<tr>
<th>Location</th>
<th>Pressure Reduction</th>
<th>Overall reduction in burst incidents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprus</td>
<td>32%</td>
<td>41%</td>
</tr>
<tr>
<td>(Water Board of Lemesos)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>40%</td>
<td>55%</td>
</tr>
<tr>
<td>(A.Lambert)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leakage Monitoring and Management
DMA Flow and Pressure Monitoring
MNF Analysis

District Night Flow Targets

Data Entry and Results

<table>
<thead>
<tr>
<th>District No</th>
<th>Actual AZNP m</th>
<th>Actual MNF m³/hr</th>
<th>Target MNF m³/hr</th>
<th>Equiv Serv Pipe Bursts no</th>
<th>Actual Tot Losses m³/d</th>
<th>Locatable Losses m³/d</th>
<th>Locatable Loss Value £/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>43</td>
<td>39.5</td>
<td>16.51</td>
<td>15</td>
<td>576.79</td>
<td>459.86</td>
<td>£55,390</td>
</tr>
<tr>
<td>121</td>
<td>45</td>
<td>39.2</td>
<td>21.09</td>
<td>12</td>
<td>591.56</td>
<td>362.18</td>
<td>£46,269</td>
</tr>
<tr>
<td>122</td>
<td>39</td>
<td>20.3</td>
<td>8.50</td>
<td>8</td>
<td>299.92</td>
<td>236.10</td>
<td>£28,438</td>
</tr>
<tr>
<td>224</td>
<td>38</td>
<td>24.1</td>
<td>14.66</td>
<td>7</td>
<td>343.22</td>
<td>188.89</td>
<td>£22,752</td>
</tr>
<tr>
<td>225</td>
<td>45</td>
<td>18.4</td>
<td>9.40</td>
<td>6</td>
<td>196.65</td>
<td>160.01</td>
<td>£21,682</td>
</tr>
<tr>
<td>226</td>
<td>36</td>
<td>8.2</td>
<td>2.16</td>
<td>4</td>
<td>142.34</td>
<td>120.88</td>
<td>£17,648</td>
</tr>
<tr>
<td>322</td>
<td>39</td>
<td>13.7</td>
<td>7.87</td>
<td>4</td>
<td>198.69</td>
<td>116.56</td>
<td>£14,891</td>
</tr>
<tr>
<td>323</td>
<td>43</td>
<td>16.2</td>
<td>10.23</td>
<td>4</td>
<td>226.76</td>
<td>119.35</td>
<td>£14,375</td>
</tr>
<tr>
<td>320</td>
<td>41</td>
<td>16.9</td>
<td>11.03</td>
<td>4</td>
<td>222.73</td>
<td>117.47</td>
<td>£14,149</td>
</tr>
<tr>
<td>131</td>
<td>23</td>
<td>7</td>
<td>2.84</td>
<td>4</td>
<td>106.45</td>
<td>83.29</td>
<td>£10,033</td>
</tr>
<tr>
<td>126</td>
<td>65</td>
<td>14.3</td>
<td>9.47</td>
<td>3</td>
<td>230.54</td>
<td>96.64</td>
<td>£13,403</td>
</tr>
<tr>
<td>134</td>
<td>33</td>
<td>21.3</td>
<td>16.85</td>
<td>3</td>
<td>206.88</td>
<td>88.94</td>
<td>£10,713</td>
</tr>
<tr>
<td>220</td>
<td>47</td>
<td>10.8</td>
<td>7.26</td>
<td>2</td>
<td>157.12</td>
<td>70.82</td>
<td>£9,047</td>
</tr>
<tr>
<td>324</td>
<td>45</td>
<td>8.5</td>
<td>5.43</td>
<td>2</td>
<td>131.54</td>
<td>61.37</td>
<td>£8,512</td>
</tr>
<tr>
<td>128</td>
<td>56</td>
<td>6.1</td>
<td>2.96</td>
<td>2</td>
<td>98.67</td>
<td>62.71</td>
<td>£7,553</td>
</tr>
<tr>
<td>128</td>
<td>33</td>
<td>17.3</td>
<td>14.36</td>
<td>2</td>
<td>167.26</td>
<td>58.70</td>
<td>£7,499</td>
</tr>
<tr>
<td>221</td>
<td>50</td>
<td>11.5</td>
<td>9.53</td>
<td>1</td>
<td>152.51</td>
<td>39.40</td>
<td>£5,033</td>
</tr>
<tr>
<td>323</td>
<td>45</td>
<td>6.1</td>
<td>4.35</td>
<td>1</td>
<td>75.29</td>
<td>34.95</td>
<td>£4,465</td>
</tr>
<tr>
<td>321</td>
<td>63</td>
<td>8</td>
<td>6.44</td>
<td>1</td>
<td>105.22</td>
<td>31.12</td>
<td>£3,975</td>
</tr>
<tr>
<td>227</td>
<td>45</td>
<td>3.6</td>
<td>1.96</td>
<td>1</td>
<td>47.99</td>
<td>32.74</td>
<td>£3,844</td>
</tr>
<tr>
<td>225</td>
<td>54</td>
<td>1</td>
<td>0.49</td>
<td>0</td>
<td>7.93</td>
<td>0.00</td>
<td>£</td>
</tr>
<tr>
<td>120</td>
<td>58</td>
<td>1.5</td>
<td>0.89</td>
<td>0</td>
<td>12.77</td>
<td>0.00</td>
<td>£</td>
</tr>
<tr>
<td>325</td>
<td>52</td>
<td>0.7</td>
<td>0.61</td>
<td>0</td>
<td>9.32</td>
<td>0.00</td>
<td>£</td>
</tr>
<tr>
<td>124</td>
<td>56</td>
<td>1.4</td>
<td>1.24</td>
<td>0</td>
<td>15.64</td>
<td>0.00</td>
<td>£</td>
</tr>
<tr>
<td>124</td>
<td>57</td>
<td>13.1</td>
<td>14.93</td>
<td>-1</td>
<td>189.37</td>
<td>0.00</td>
<td>£</td>
</tr>
<tr>
<td>228</td>
<td>53</td>
<td>4.7</td>
<td>6.07</td>
<td>-1</td>
<td>77.97</td>
<td>0.00</td>
<td>£</td>
</tr>
<tr>
<td>129</td>
<td>46</td>
<td>9.3</td>
<td>10.55</td>
<td>-1</td>
<td>115.58</td>
<td>0.00</td>
<td>£</td>
</tr>
<tr>
<td>132</td>
<td>47</td>
<td>4.7</td>
<td>1.42</td>
<td>-1</td>
<td>19.17</td>
<td>0.00</td>
<td>£</td>
</tr>
<tr>
<td>223</td>
<td>43</td>
<td>38.9</td>
<td>44.39</td>
<td>-4</td>
<td>276.44</td>
<td>0.00</td>
<td>£</td>
</tr>
</tbody>
</table>

Summary for the 20-Nov-02

<table>
<thead>
<tr>
<th>No of ESPB's</th>
<th>Total Losses Estimate m³/day</th>
<th>Locatable Losses m³/day</th>
<th>Total Cost of Locatable Losses £</th>
</tr>
</thead>
<tbody>
<tr>
<td>08</td>
<td>5002</td>
<td>2002</td>
<td>£315,771</td>
</tr>
</tbody>
</table>
MNF Monitoring

District 227
Year 2005 Minimum Night Flow

District 226
Year 2005 Minimum Night Flow

District 232
Year 2005 Minimum Night Flow

Data entry	Calculated values	Data from another Worksheet
Step 1: Enter Country, Currency, Volume Units, Utility and System
- **Country:** Cyprus
- **Currency:** EC
- **Volume units:** m³
- **Utility:** Water Board of Leros/Cos
- **System:** D326

Step 2: Enter mains length & number of service connections
- **Length of mains:** 17.8 km
- **Number of service connections:** 1500

Step 3: Enter key parameters for calculations (CV, CI, RR)
- **Variable cost of water CV:** 0.850 EC/m³
- **Full system intervention cost CI:** 3669 EC
- **Natural Rate of Rise of unreported leakage RR:** 41 m³/day in a year
- **Economic annual % surveyed:** 106% of system
- **Annual Budget for Intervention:** 3.9 Thousand EC
- **Economic Unreported Leakage:** 12.9 litres/service conn./day

Step 4: Review calculated figures for Economic Intervention
- **Economic Intervention every:** 11 months
- **Economic Unreported Leakage:** 1.08 m³/km of mains/day
- **Economic Intervention:** 1.08 m³/km of mains/day
- **Economic Unreported Leakage:** 1.08 m³/km of mains/day

LEAKS software
Leak Location and Repair

Awareness (A) = 2 days; Location (L) = 10 days; Repair (R) = 1 day
Loss of water = 4200 m³

April, May 2004 Flow & Pressure

Awareness (A) = 2 days; Location (L) = 28 days; Repair (R) = 1 day
Loss of water = 7200 m³

District 129
August, September 2004 Flow & Pressure
Targeting and Benchmarking
Targeting and Benchmarking

Goal Setting

• Identified areas to be improved
• Prioritized most effective actions

Benchmarking

• Decided on Key Performance Indicators
• Checked and compared performance to other utilities
Non – Revenue Water

Financial PI basic (IWA Level 1, Fi 36)

Source: WBL
Liters / service connection / day

Operational PI for Real Losses basic (IWA Level 3, Op 24)

Technical Performance: A – pressurized system: average pressure 40 m

(Developed Countries) : <100 liters/connection/day

Source: WBL
Infrastructure Leakage Index

Operational PI for Real Losses Detailed (IWA Level 3, Op 25)

Technical Performance: **A** (ILI 1-2: Excellent – no specific intervention required)
(Developed Countries)

Source: WBL
Intermittent Water Supply
Increase in Leakage

Source: Water Board Lemesos, Cyprus
Increase in the Number of Breaks

20 DMAs: 373Km: 45% total

2008 – 2009 Intermittent Water Supply (IWS)

<table>
<thead>
<tr>
<th>Description</th>
<th>Number of reported breaks</th>
<th>%increase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2007 (24x7x365) Before IWS</td>
<td>2010 (24x7x365) After IWS</td>
</tr>
<tr>
<td>Mains</td>
<td>14 / 100km</td>
<td>42 / 100km</td>
</tr>
<tr>
<td>Service connections</td>
<td>15 / 1000 connections</td>
<td>30 / 1000 connections</td>
</tr>
</tbody>
</table>

Source: Water Board Lemesos, Cyprus
System Input vs Consumption

<table>
<thead>
<tr>
<th>Year</th>
<th>System Input Volume</th>
<th>Customer Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007 Before Intermittent Supply</td>
<td>0% (base line)</td>
<td>0% (base line)</td>
</tr>
<tr>
<td>2008 Intermittent Supply</td>
<td>-17,5%</td>
<td>-9,2%</td>
</tr>
<tr>
<td>2009 Intermittent Supply</td>
<td>-9,1%</td>
<td>-8,9%</td>
</tr>
<tr>
<td>2010 After Intermittent Supply</td>
<td>+12,8%</td>
<td>-1,2%</td>
</tr>
</tbody>
</table>

Source: Water Board Lemesos, Cyprus
Thank you

Bambos Charalambous
Tel.: +357 99 612 109
Email: bcharalambous@cytanet.com.cy